Relating Epistemic Irrelevance to Event Trees

نویسندگان

  • Sébastien Destercke
  • Gert de Cooman
چکیده

We relate the epistemic irrelevance in Walley’s behavioural theory of imprecise probabilities to the event-tree independence due to Shafer. In particular, we show that forward irrelevance is equivalent to event-tree independence in particular event trees, suitably generalised to allow for the fact that imprecise rather than precise probability models are attached to the nodes in the tree. This allows us to argue that in a theory of uncertain processes, the asymmetrical notion of epistemic irrelevance has a more important role to play than its more involved and symmetrical counterpart called epistemic independence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epistemic irrelevance in credal networks: the case of imprecise Markov trees

We replace strong independence in credal networks with the weaker notion of epistemic irrelevance. Focusing on directed trees, we show how to combine local credal sets into a global model, and we use this to construct and justify an exact message-passing algorithm that computes updated beliefs for a variable in the tree. The algorithm, which is essentially linear in the number of nodes, is form...

متن کامل

Epistemic irrelevance in credal nets: the case of imprecise Markov trees

We focus on credal nets, which are graphical models that generalise Bayesian nets to imprecise probability. We replace the notion of strong independence commonly used in credal nets with the weaker notion of epistemic irrelevance, which is arguably more suited for a behavioural theory of probability. Focusing on directed trees, we show how to combine the given local uncertainty models in the no...

متن کامل

On the Complexity of Strong and Epistemic Credal Networks

Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance an...

متن کامل

Concentration Inequalities and Laws of Large Numbers under Irrelevance of Lower and Upper Expectations

for any bounded function f of Xi and any event A(X1:i−1) defined by variables X1:i−1. Here the functional E is an upper expectation (Section 2). A judgement of epistemic irrelevance can be interpreted as a relaxed judgement of stochastic independence, perhaps motivated by a robustness analysis or by disagreements amongst a set of decision makers. Alternatively, one might consider epistemic irre...

متن کامل

Probabilistic Inference in Credal Networks: New Complexity Results

Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008